Legendre’s Singular Modulus

نویسندگان

چکیده

In 1811, Legendre published an identity between integrals involving the constant k:= sin ⁡π12 that inspired Abel to create his brilliant theory of complex multiplication. Then k reappeared as eccentricity ellipse whose arclength Ramanujan computed explicitly in terms gamma functions with rational arguments. Finally, appeared a consequence three-body choreography along Bernoulli’s lemniscate. We develop these results detail well mentioning random walks on cubic lattice and renormalization period simple pendulum. All this shows wonderful unity underlying seemingly different branches mathematics physics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Modulus Singular Sets

A new concept of stability, closely related to that of structural stability, is introduced and applied to the study of Cr endomorphisms with singularities. A map that is stable in this sense will be conjugated to each perturbation that is equivalent to it in a geometric sense. It will be shown that this kind of stability implies Axiom A, Omega-stability and that every critical point is wanderin...

متن کامل

Ramanujan ’ s Most Singular Modulus MARK B . VILLARINO

We present an elementary self-contained detailed computation of Ramanujan’s most famous singular modulus, k210, based on the Kronecker Limit Formula.

متن کامل

2 00 5 Ramanujan ’ s Most Singular Modulus

We present a detailed computation of Ramanujan’s most famous singular modulus, k210, based on the Kronecker Limit Formula.

متن کامل

Singular constrained linear systems

In the linear system Ax = b the points x are sometimes constrained to lie in a given subspace S of column space of A. Drazin inverse for any singular or nonsingular matrix, exist and is unique. In this paper, the singular consistent or inconsistent constrained linear systems are introduced and the effect of Drazin inverse in solving such systems is investigated. Constrained linear system arise ...

متن کامل

Running Modulus Recursions

Fix integers b ≥ 2 and k ≥ 1. Define the sequence {zn} recursively by taking z0 to be any integer, and for n ≥ 1, take zn to be the least nonnegative residue of bzn−1 modulo (n + k). Since the modulus increases by 1 when stepping from one term to the next, such a definition will be called a running modulus recursion or rumor for short. While the terms of such sequences appear to bounce around i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Mathematical Monthly

سال: 2022

ISSN: ['1930-0972', '0002-9890']

DOI: https://doi.org/10.1080/00029890.2022.2094155